Showing posts with label ASTRON-Institute. Show all posts
Showing posts with label ASTRON-Institute. Show all posts

Under 'dark halo' old galaxies have many more stars

Posted by carsimulator on Thursday, April 26, 2012

Omega Centauri: the tiny red stars (blue is hot red is cold) are just the sort of faint stars that can be imaged in a nearby cluster like this one but cannot be seen in distant galaxies. However, by measuring their combined mass contribution it is possible to discover that old galaxies are dominated by little red stars like these. Click here for a high res image

Some of the oldest galaxies in the Universe have three times more stellar mass, and so many more stars, than all current models of galaxy evolution predict. The finding comes from the Atlas3D international team, led by Michele Cappellari (Oxford), and including ASTRON astronomers Paolo Serra, Raffaella Morganti and Tom Oosterloo, who found a way to remove the 'halo' of dark matter that has clouded previous calculations.

The team's analysis means that all current models, which assumed for decades that the light we observe from a galaxy can be used to infer its stellar mass, will have to be revised. It also suggests that researchers have a new riddle to ponder: exactly how galaxies forming so early in the life of the Universe got to be massive so fast. A report of the research is published in this week's Nature.

'The light we see from galaxies is just the tip of the iceberg, but what we really need to measure are galaxy masses that all models directly predict,' said Dr Michele Cappellari of Oxford University's Department of Physics, who led the work. 'Galaxies can contain huge numbers of small stars, planets or black holes that have lots of mass but give out very little or no light at all. Up until now models assumed that stellar light could be used to infer the stellar masses and any remaining discrepancy with the observed total mass could be hidden behind a 'halo' of dark matter. Our analysis shows that they can't hide any longer: galaxies are diverse and some have many more stars and are even stranger than we'd assumed.'

Up to now the key limitation on what it was possible to say about the stellar mass of galaxies was the difficulty in separating this out from the mass contributed by dark matter. Various attempts from independent groups failed to provide a conclusive answer. he new analysis succeeded thanks to the availability of two-dimensional maps of stellar motions for a large sample of galaxies, combined with sophisticated models. By disentangling stellar mass from dark matter the team was able to show that instead of the relationship between observable light and stellar mass being universal, it varies between different types of galaxies - with some older galaxies having three times the mass suggested by the light they give off.

'The question of how you should turn light from a galaxy into a prediction of its mass has been hotly debated but up until now nobody has been able to kill off the idea that there's a simple and universal way to convert observed light into mass,' said Dr Cappellari. 'We now think we've done that by eliminating the 'fuzziness' in models caused by dark matter. It's exciting because it reveals how much more there is to discover about how galaxies, and the early Universe itself, evolved.'

This research is part of the Atlas3D project and is part-funded by the Science and Technology Facilities Council, the UK sponsors of astronomy and of the William Herschel Telescope (WHT) which was used by the team. More information about the project and its team can be found here: http://www-astro.physics.ox.ac.uk/atlas3d/

For more information contact Prof. Dr Tom Oosterloo +31 (0)521 595 100 or Dr Michele Cappellari +44 (0)1865 273647

More aboutUnder 'dark halo' old galaxies have many more stars

The ATLAS3D project: Replacing the handle of Hubble's tuning fork

Posted by carsimulator on Tuesday, June 21, 2011



A team of 25 astronomers from Europe and Northern America, including ASTRON astronomers Morganti, Oosterloo, and Serra, has shown that many galaxies, which are normally classified as spheroid galaxies according to the 70 year old Hubble classification scheme, are in fact spiral galaxies. The so-called ATLAS3D team observed a sample of 260 galaxies with the SAURON spectrograph on the 4.2-meter William Herschel Telescope on La Palma, which allowed them to determine the movements of the stars in these carefully selected galaxies. The results are important because it gives astronomers more information about the way galaxies form.

The team proposed a revised scheme in which the vast majority of spheroid galaxies, also known as early-type galaxies, are close relatives of spiral galaxies and for this reason form a parallel sequence to them. The new paradigm highlights a much closer connection between early-type and spiral galaxies than previously thought, and this will need to be considered in future models of how galaxies form. The above results were presented in three ATLAS3D team papers which will appear this month on the journal Monthly Notices of the Royal Astronomical Society.

Since Edwin Hubble introduced his famous tuning fork diagram more than 70 years ago, spiral galaxies and early-type galaxies have been regarded as being two distinct families. The spirals are characterised by the presence of disks of stars and gas in rapid rotation, while the early-types are gas poor and described as spheroid systems, with less rotation and often non-axisymmetric shapes. This clear distinction is emphasized in Hubble's tuning-fork diagram, where early-type galaxies lie on the handle of the fork, well separated from spiral galaxies. The separation is physically relevant as it implies a distinct path of formation for the two classes of objects.

A known issue of Hubble's classification, however, is that it mostly relies on optical images, from which it is nearly impossible to recognize thin face-on disks of stars from much rounder edge-on spheroids. For this reason the fraction of disks-like systems hidden in the early-type category has been a matter of debate for decades. The solution to the problem comes from observations of the stellar kinematics: the stars in a thin disk rotate much faster than those in a rounder spheroid. This implies that the kinematics makes it possible to recognize a disk from a spheroid at any inclination. However it requires complex and time-consuming observations.

The new results were unexpected and reveal a new paradigm for early-type galaxies. For the first time, it was found that the overwhelming majority of the early-type galaxies in the nearby Universe does not consist of roundish spheroidal objects, but instead has disks and mostly resembles spiral galaxies with the gas and dust removed. Only a tiny fraction of the early-type galaxies - the "slow rotators" - are genuine spheroids. This indicates that Hubble's classic tuning-fork gives a misleading description of galaxy structure.

For more information, please contact:

Prof. Dr. Tom Oosterloo, senior astronomer. Tel.: +31 521 595 779. E-mail: oosterloo@astron.nl.

Femke Boekhorst, PR & Communication. Tel.: +31 521 595 204. E-mail: boekhorst@astron.nl.


Caption to the figure: Maps of the observed velocity of the stars in the volume-limited sample of 260 early-type galaxies of the ATLAS3D survey. Red/blue colours indicate stars moving away/towards us respectively. Fast rotating and disk-like galaxies are characterized by two large and symmetric red/blue peaks at the two sides of the centre. This figure shows that this class of objects constitutes the vast majority of the sample.

More information:

Introduction to the ATLAS3D project: Cappellari et al. (2011, MNRAS, 413, 813: http://dx.doi.org/10.1111/j.1365-2966.2010.18174.x )

The kinematic classification of galaxies: Krajnović et al. (2011, MNRAS, in press: http://adsabs.harvard.edu/abs/2011arXiv1102.3801K), and Emsellem et al. (2011, MNRAS, in press: http://dx.doi.org/10.1111/j.1365-2966.2011.18496.x )

The comb classification diagram: Cappellari et al. (2011, MNRAS, in press: http://adsabs.harvard.edu/abs/2011arXiv1104.3545C )

The project website, including the full list of ATLAS3D papers, published data, and details on observations at other wavelengths: http://purl.org/atlas3d .

ATLAS3D Team Members:

Katey Alatalo (UC Berkeley [USA]) Leo Blitz (UC Berkeley [USA]) Maxime Bois (Observatoire de Lyon [France]) Frederic Bournaud (CEA, Paris-Saclay [France]) Martin Bureau (University of Oxford [UK]) Michele Cappellari (University of Oxford [UK]) Roger L. Davies (University of Oxford [UK]) Timothy A. Davis (University of Oxford [UK]) P. T. de Zeeuw (ESO, Garching [Germany]; Leiden University [The Netherlands]) Pierre-Alain Duc (Laboratoire AIM, Paris-Saclay [France]) Eric Emsellem (ESO, Garching [Germany]; Observatoire de Lyon [France]) Sadegh Khochfar (MPE, Garching [Germany]) Davor Krajnovic (ESO, Garching [Germany]) Harald Kuntschner (ESO, Garching [Germany]) Pierre-Yves Lablanche (Observatoire de Lyon [France]) Richard M. McDermid (Gemini Observatory, Hilo [USA]) Raffaella Morganti (ASTRON, Groningen University [The Netherlands]) Thorsten Naab (MPIA, Garching [Germany]) Tom Oosterloo (ASTRON, Groningen University [The Netherlands]) Marc Sarzi (University of Hertfordshire [UK]) Nicholas Scott (University of Oxford [UK]) Paolo Serra (ASTRON, Dwingeloo [The Netherlands]) A. Weijmans (Dunlap Inst., Univ. of Toronto, [Canada]) Lisa M. Young (New Mexico Tech, Socorro [USA]).

More aboutThe ATLAS3D project: Replacing the handle of Hubble's tuning fork