Showing posts with label GOODS. Show all posts
Showing posts with label GOODS. Show all posts

Hubble Uncovers Tiny Galaxies Bursting with Star Birth in Early Universe

Posted by carsimulator on Thursday, November 10, 2011

GOODS South Deep (GSD)
Credit: NASA, ESA, A. van der Wel (Max Planck Institute for Astronomy, Heidelberg, Germany), H. Ferguson and A. Koekemoer (Space Telescope Science Institute, Baltimore, Md.), and the CANDELS team. More Images

Using its near-infrared vision to peer 9 billion years back in time, NASA's Hubble Space Telescope has uncovered an extraordinary population of tiny, young galaxies that are brimming with star formation. The galaxies are typically a hundred times less massive than the Milky Way galaxy, yet they churn out stars at such a furious pace that their stellar content would double in just 10 million years. By comparison, the Milky Way would take a thousand times longer to double its population.

These newly discovered dwarf galaxies are extreme even for the young universe, when most galaxies were forming stars at higher rates than they are today. The universe is 13.7 billion years old. Hubble spotted the galaxies because the radiation from young, hot stars has caused the oxygen in the gas surrounding them to light up like a bright neon sign. The rapid star birth likely represents an important phase in the formation of dwarf galaxies, the most common galaxy type in the cosmos.

"The galaxies have been there all along, but up until recently astronomers have been able only to survey tiny patches of sky at the sensitivities necessary to detect them," said Arjen van der Wel of the Max Planck Institute for Astronomy in Heidelberg, Germany. Van der Wel is the lead author of a paper that will be published online Nov. 14 in The Astrophysical Journal. "We weren't looking specifically for these galaxies, but they stood out because of their unusual colors."

The observations were part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), an ambitious three-year survey to analyze the most distant galaxies in the universe. CANDELS is the census of dwarf galaxies at such an early epoch in the universe's history.

"In addition to the images, Hubble has captured spectra that show us the oxygen in a handful of galaxies and confirm their extreme star-forming nature," said co-author Amber Straughn at NASA's Goddard Space Flight Center in Greenbelt, Md. "Spectra are like fingerprints — they tell us the galaxies' chemical composition."

The observations are somewhat at odds with recent detailed studies of the dwarf galaxies that are orbiting as satellites of the Milky Way.

"Those studies suggest that star formation was a relatively slow process, stretching out over billions of years," explained Harry Ferguson of the Space Telescope Science Institute (STScI) in Baltimore, Md., co-leader of the CANDELS survey. "The CANDELS finding that there were galaxies of roughly the same size forming stars at very rapid rates at early times is forcing us to re-examine what we thought we knew about dwarf galaxy evolution."

Added team member Anton Koekemoer, also of STScI, who is producing all the Hubble imaging data for the survey: "As our observations continue, we should find many more of these young galaxies and gather more details on their star-forming histories."

The CANDELS team uncovered the 69 young dwarf galaxies in near-infrared images taken with Hubble's Wide Field Camera 3 and Advanced Camera for Surveys. The galaxies were found in two regions of the sky called the Great Observatories Origins Deep Survey South and the UKIDSS Ultra Deep Survey (part of the UKIRT Infrared Deep Sky Survey).

The observations suggest that the newly discovered galaxies were very common 9 billion years ago. It is a mystery, however, why the newly found dwarf galaxies were making batches of stars at such a high rate. Computer simulations show that star formation in small galaxies may be episodic. Gas cools and collapses to form stars. The stars then reheat the gas through, for example, supernova explosions, which blow the gas away. After some time, the gas cools and collapses again, producing a new burst of star formation, continuing the cycle.

"While these theoretical predictions may provide hints to explain the star formation in these newly discovered galaxies, the observed 'bursts' are much more intense than what the simulations can reproduce," van der Wel said.

The James Webb Space Telescope, an infrared observatory scheduled to launch later this decade, will be able to probe these faint galaxies at an even earlier era to see the glow of the first generation of stars, providing detailed information of the galaxies' chemical composition.

"With Webb, we'll probably see even more of these galaxies, perhaps even pristine galaxies that are experiencing their first episode of star formation," Ferguson said. "Being able to probe down to dwarf galaxies in the early universe will help us understand the formation of the first stars and galaxies."

CONTACT

Donna Weaver / Ray Villard
Space Telescope Science Institute, Baltimore, Md.
410-338-4493 / 410-338-4514
dweaver@stsci.edu / villard@stsci.edu

Henry Ferguson
Space Telescope Science Institute, Baltimore, Md.
410-338-5098
ferguson@stsci.edu

More aboutHubble Uncovers Tiny Galaxies Bursting with Star Birth in Early Universe

Herschel paints new story of galaxy evolution

Posted by carsimulator on Tuesday, September 13, 2011

Galaxy forming stars
A galaxy accretes mass from rapid, narrow streams of cold gas. These filaments provide the galaxy with continuous flows of raw material to feed its star-forming at a rather leisurely pace.

This theoretical scenario for galaxy formation is based on the numerical simulations presented by Dekel et al., 2009 (Nature, 457, 451D). However, the actual process of stream accretion onto a galaxy has never been directly observed and it remains speculative. Credits: ESA–AOES Medialab. HI-RES JPEG (Size: 1476 kb)


Herschel's view of GOODS-North
GOODS-North is a patch of sky in the northern hemisphere that covers an area of about a third the size of the Full Moon. This images was taken by Herschel at the following infrared wavelengths: 100μm (blue), 160μm (green) and 250μm (red). North is up and East is left. Credits: ESA/GOODS-Herschel consortium/David Elbaz . HI-RES JPEG (Size: 585 kb)

In the nearby, present-day Universe, such high birth rates are very rare and always seem to be triggered by galaxies colliding with each other. So, astronomers had assumed that this was true throughout history.

Herschel now shows that this is not the case by looking at galaxies that are very far away and thus seen as they were billions of years ago.

David Elbaz, CEA Saclay, France, and collaborators have analysed the Herschel data and find that galaxy collisions played only a minor role in triggering star births in the past, even though some young galaxies were creating stars at furious rates.

By comparing the amount of infrared light released at different wavelengths by these galaxies, the team has shown that the star birth rate depends on the quantity of gas they contain, not whether they are colliding.

Gas is the raw building material for stars and this work reveals a simple link: the more gas a galaxy contains, the more stars are born.

Herschel's view of GOODS-South
GOODS-South is a patch of sky in the southern hemisphere that covers an area of about a third the size of the Full Moon. This images was taken by Herschel and NASA's Spitzer space telescope at the following infrared wavelengths:24 μm (blue), 100 μm (green) and 160 μm (red). North is up and East is left. Credits: ESA/GOODS-Herschel consortium/NASA/JPL-Caltech/David Elbaz .HI-RES JPEG (Size: 1036 kb)

"It's only in those galaxies that do not already have a lot of gas that collisions are needed to provide the gas and trigger high rates of star formation", says Dr Elbaz.

This applies to today's galaxies because, after forming stars for more than 10 billion years, they have used up most of their gaseous raw material.

The research paints a much more stately picture of star births than before, with most galaxies sitting in space, growing slowly and naturally from the gas they attract from their surroundings.

"Herschel was conceived to study the history of star formation across cosmic time", says Göran Pilbratt, ESA Herschel Project Scientist.

"These new observations now change our perception of the history of the Universe."


Further information

Notes for Editors

'GOODS–Herschel: an infrared main sequence for star-forming galaxies' by D. Elbaz et al. is published in Astronomy & Astrophysics, 533, A119. It is available online at:
http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201117239&Itemid=129

For further information, please contact:

Markus Bauer
ESA Science and Robotic Exploration Communication Officer
Tel: +31 71 565 6799
Mob: +31 61 594 3 954
Email: markus.bauer@esa.int

David Elbaz
CEA Saclay
Tel: +33 1 69 08 54 39
Email: delbaz@cea.fr

Göran Pilbratt
ESA Herschel Project Scientist
Tel: +31 71 565 3621
Email: gpilbratt@rssd.esa.int

More aboutHerschel paints new story of galaxy evolution