Showing posts with label Enceladus. Show all posts
Showing posts with label Enceladus. Show all posts

Enceladus Plume is a New Kind of Plasma Laboratory

Posted by carsimulator on Saturday, June 2, 2012

Cassini imaging scientists used views like this one to help them identify the source locations for individual jets spurting ice particles, water vapor and trace organic compounds from the surface of Saturn's moon Enceladus. Image credit: NASA/JPL/Space Science Institute . Full image and caption

PASADENA, Calif. - Recent findings from NASA's Cassini mission reveal that Saturn's geyser moon Enceladus provides a special laboratory for watching unusual behavior of plasma, or hot ionized gas. In these recent findings, some Cassini scientists think they have observed "dusty plasma," a condition theorized but not previously observed on site, near Enceladus.

Data from Cassini's fields and particles instruments also show that the usual "heavy" and "light" species of charged particles in normal plasma are actually reversed near the plume spraying from the moon's south polar region. The findings are discussed in two recent papers in the Journal of Geophysical Research.

"These are truly exciting discoveries for plasma science," said Tamas Gombosi, Cassini fields and particles interdisciplinary scientist based at the University of Michigan, Ann Arbor. "Cassini is providing us with a new plasma physics laboratory."

Ninety-nine percent of the matter in the universe is thought to be in the form of plasma, so scientists have been using Saturn as a site other than Earth to observe the behavior of this cloud of ions and electrons directly. Scientists want to study the way the sun sends energy into Saturn's plasma environment, since that jolt of energy drives processes such as weather and the behavior of magnetic field lines. They can use these data to understand how Saturn's plasma environment is similar to and different from that of Earth and other planets.

The small, icy moon Enceladus is a major source of ionized material filling the huge magnetic bubble around Saturn. About 200 pounds (about 100 kilograms) of water vapor per second - about as much as an active comet - spray out from long cracks in the south polar region known as "tiger stripes." The ejected matter forms the Enceladus plume - a complex structure of icy grains and neutral gas that is mainly water vapor. The plume gets converted into charged particles interacting with the plasma that fills Saturn's magnetosphere.

The nature of this unique gas-dust-plasma mixture has been revealed over the course of the mission with data from multiple instruments, including the Cassini plasma spectrometer, magnetometer, magnetospheric imaging instrument, and the radio and plasma wave science instrument. What scientists found most interesting is that the grains range continuously in size from small water clusters (a few water molecules) to thousandths of an inch (100 micrometers). They also saw that a large fraction of these grains trap electrons on their surface. Up to 90 percent of the electrons from the plume appear to be stuck on large, heavy grains.

In this environment, Cassini has now seen positively charged ions become the small, "light" plasma species and the negatively charged grains become the "heavy" component. This is just the opposite of "normal" plasmas, where the negative electrons are thousands of times lighter than the positive ions.

In a paper published in the December issue of the journal, a team of Swedish and U.S. scientists on the Cassini mission examined radio and plasma wave science instrument observations from four flybys of Enceladus during 2008. They found a high plasma density (both ions and electrons) within the Enceladus plume region, although the electron densities are usually much lower than the ion densities in the plumes and in the E ring. The team concluded that dust particles a hundred millionth to a hundred thousandth of an inch (a nanometer to micrometer) in size are sweeping up the negatively charged electrons. The mass of the observed "nanograins" ranges from a few hundred to a few tens of thousands of atomic mass units (proton masses), and must therefore contain tens to thousands of water molecules bound together. At least half of the negatively charged electrons are attached to the dust, and their interaction with the positively charged particles causes the ions to be decelerated. Because the dust is charged and behaves as part of the plasma cloud, this paper distinguishes this state of matter from dust that just happens to be in plasma.

"Such strong coupling indicates the possible presence of so-called 'dusty plasma', rather than the 'dust in a plasma' conditions which are common in interplanetary space," said Michiko Morooka from the Swedish Institute of Space Physics, lead author of the paper and a Cassini radio and plasma wave science co-investigator. "Except for measurements in Earth's upper atmosphere, there have previously been no in-situ observations of dusty plasma in space."

In a dusty plasma, conditions are just right for the dust to also participate in the plasma's collective behavior. This increases the complexity of the plasma, changes its properties and produces totally new collective behavior. Dusty plasma are thought to exist in comet tails and dust rings around the sun, but scientists rarely have the opportunity to fly through the dusty plasma and directly measure its characteristics in place.

A separate analysis, based on data obtained by the Cassini plasma spectrometer, revealed the presence of nanograins having an electric charge corresponding to a single excess electron. "The Cassini plasma spectrometer has enabled us to discover and analyze new classes of charged particles that were wholly unanticipated when the instrument was designed and built in the 1980s and 90s," said Tom Hill, the study's lead author and a co-investigator based at Rice University in Houston.

The nature of the Enceladus plume has been revealed over time due to the synergistic nature of the fields and particles instruments on Cassini, which has been in residence in Saturn's magnetosphere since 2004. Following the original detection of the plume based on magnetometer measurements, Sven Simon from the University of Cologne, Germany, and Hendrik Kriegel from the University of Braunschweig, Germany, found that the observed perturbation of Saturn's magnetic field required the presence of negatively charged dust grains in the plume. These findings were reported in the April and October 2011 issues of Journal of Geophysical Research Space Physics. Previous data obtained by the ion and neutral mass spectrometer revealed the complex composition of the plume gas, and the cosmic dust analyzer revealed that the plume grains were rich in sodium salts. Because this scenario can only arise if the plume originated from liquid water, it provides compelling evidence for a subsurface ocean.

Cassini will continue to study the complex nature of the plume region in the three planned additional flybys of Enceladus. The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington. More Cassini information is at http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov .

Jia-Rui C. Cook 818-354-0850
Jet Propulsion Laboratory, Pasadena, Calif.
jccook@jpl.nasa.gov

More aboutEnceladus Plume is a New Kind of Plasma Laboratory

Saturn's Moon Enceladus Spreads Its Influence

Posted by carsimulator on Wednesday, September 21, 2011

Water vapor and ice erupt from Saturn's moon Enceladus, the source of a newly discovered donut-shaped cloud around Saturn. Full image and caption

Chalk up one more feat for Saturn's intriguing moon Enceladus. The small, dynamic moon spews out dramatic plumes of water vapor and ice -- first seen by NASA's Cassini spacecraft in 2005. It possesses simple organic particles and may house liquid water beneath its surface. Its geyser-like jets create a gigantic halo of ice, dust and gas around Enceladus that helps feed Saturn's E ring. Now, thanks again to those icy jets, Enceladus is the only moon in our solar system known to influence substantially the chemical composition of its parent planet.

In June, the European Space Agency announced that its Herschel Space Observatory, which has important NASA contributions, had found a huge donut-shaped cloud, or torus, of water vapor created by Enceladus encircling Saturn. The torus is more than 373,000 miles (600,000 kilometers) across and about 37,000 miles (60,000 kilometers) thick. It appears to be the source of water in Saturn's upper atmosphere.

Though it is enormous, the cloud had not been seen before because water vapor is transparent at most visible wavelengths of light. But Herschel could see the cloud with its infrared detectors. "Herschel is providing dramatic new information about everything from planets in our own solar system to galaxies billions of light-years away," said Paul Goldsmith, the NASA Herschel project scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

The discovery of the torus around Saturn did not come as a complete surprise. NASA's Voyager and Hubble missions had given scientists hints of the existence of water-bearing clouds around Saturn. Then in 1997, the European Space Agency's Infrared Space Observatory confirmed the presence of water in Saturn's upper atmosphere. NASA's Submillimeter Wave Astronomy Satellite also observed water emission from Saturn at far-infrared wavelengths in 1999.

While a small amount of gaseous water is locked in the warm, lower layers of Saturn's atmosphere, it can't rise to the colder, higher levels. To get to the upper atmosphere, water molecules must be entering Saturn's atmosphere from somewhere in space. But from where and how? Those were mysteries until now.

Build the model and the data will come.

The answer came by combining Herschel's observations of the giant cloud of water vapor created by Enceladus' plumes with computer models that researchers had already been developing to describe the behavior of water molecules in clouds around Saturn.

One of these researchers is Tim Cassidy, a recent post-doctoral researcher at JPL who is now at the University of Colorado's Laboratory for Atmospheric and Space Physics, Boulder. "What's amazing is that the model," said Cassidy, "which is one iteration in a long line of cloud models, was built without knowledge of the observation. Those of us in this small modeling community were using data from Cassini, Voyager and the Hubble telescope, along with established physics. We weren't expecting such detailed 'images' of the torus, and the match between model and data was a wonderful surprise."

The results show that, though most of the water in the torus is lost to space, some of the water molecules fall and freeze on Saturn's rings, while a small amount -- about 3 to 5 percent -- gets through the rings to Saturn's atmosphere. This is just enough to account for the water that has been observed there.

Herschel's measurements combined with the cloud models also provided new information about the rate at which water vapor is erupting out of the dark fractures, known as "tiger stripes," on Enceladus' southern polar region. Previous measurements by the Ultraviolet Imaging Spectrograph (UVIS) instrument aboard the Cassini spacecraft showed that every second the moon is ejecting about 440 pounds (200 kilograms) of water vapor.

"With the Herschel measurements of the torus from 2009 and 2010 and our cloud model, we were able to calculate a source rate for water vapor coming from Enceladus," said Cassidy. "It agrees very closely with the UVIS finding, which used a completely different method."

"We can see the water leaving Enceladus and we can detect the end product -- atomic oxygen -- in the Saturn system," said Cassini UVIS science team member Candy Hansen, of the Planetary Science Institute, Tucson, Ariz. "It's very nice with Herschel to track where it goes in the meantime."

While a small fraction of the water molecules inside the torus end up in Saturn's atmosphere, most are broken down into separate atoms of hydrogen and oxygen.
"When water hangs out in the torus, it is subject to the processes that dissociate water molecules," said Hansen, "first to hydrogen and hydroxide, and then the hydroxide dissociates into hydrogen and atomic oxygen." This oxygen is dispersed through the Saturn system. "Cassini discovered atomic oxygen on its approach to Saturn, before it went into orbit insertion. At the time, no one knew where it was coming from. Now we do."

"The profound effect this little moon Enceladus has on Saturn and its environment is astonishing," said Hansen.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of TechnLinkology in Pasadena, manages the mission for NASA's Science Mission Directorate in Washington. The Cassini orbiter and several of its instruments were designed, developed and assembled at JPL.

Herschel is a European Space Agency cornerstone mission, with science instruments provided by consortia of European institutes and with important participation by NASA. NASA's Herschel Project Office is based at JPL. JPL contributed mission-enabling technology for two of Herschel's three science instruments. The NASA Herschel Science Center, part of the Infrared Processing and Analysis Center at Caltech, supports the United States astronomical community.

Rosemary Sullivant 818-354-0850
Jet Propulsion Laboratory, Pasadena, Calif.
Rosemary.sullivant@jpl.nasa.gov

More aboutSaturn's Moon Enceladus Spreads Its Influence

Cassini Captures Ocean-Like Spray at Saturn Moon

Posted by carsimulator on Wednesday, June 22, 2011

Dramatic plumes, both large and small, spray water ice out from many locations along the famed "tiger stripes" near the south pole of Saturn's moon Enceladus. The tiger stripes are fissures that spray icy particles, water vapor and organic compounds. Image credit: NASA/JPL/Space Science Institute . Full image and caption

PASADENA, Calif. -- NASA's Cassini spacecraft has discovered the best evidence yet for a large-scale saltwater reservoir beneath the icy crust of Saturn's moon Enceladus. The data came from the spacecraft's direct analysis of salt-rich ice grains close to the jets ejected from the moon.

Data from Cassini's cosmic dust analyzer show the grains expelled from fissures, known as tiger stripes, are relatively small and predominantly low in salt far away from the moon. But closer to the moon's surface, Cassini found that relatively large grains rich with sodium and potassium dominate the plumes. The salt-rich particles have an "ocean-like" composition and indicate that most, if not all, of the expelled ice and water vapor comes from the evaporation of liquid salt water. The findings appear in this week's issue of the journal Nature.

"There currently is no plausible way to produce a steady outflow of salt-rich grains from solid ice across all the tiger stripes other than salt water under Enceladus's icy surface," said Frank Postberg, a Cassini team scientist at the University of Heidelberg, Germany, and the lead author on the paper. When water freezes, the salt is squeezed out, leaving pure water ice behind. If the plumes emanated from ice, they should have very little salt in them.

The Cassini mission discovered Enceladus' water-vapor and ice jets in 2005. In 2009, scientists working with the cosmic dust analyzer examined some sodium salts found in ice grains of Saturn's E ring, the outermost ring that gets its material primarily from Enceladean jets. But the link to subsurface salt water was not definitive.

The new paper analyzes three Enceladus flybys in 2008 and 2009 with the same instrument, focusing on the composition of freshly ejected plume grains. The icy particles hit the detector target at speeds between 15,000 and 39,000 mph (23,000 and 63,000 kilometers per hour), vaporizing instantly. Electrical fields inside the cosmic dust analyzer separated the various constituents of the impact cloud.

The data suggest a layer of water between the moon's rocky core and its icy mantle, possibly as deep as about 50 miles (80 kilometers) beneath the surface. As this water washes against the rocks, it dissolves salt compounds and rises through fractures in the overlying ice to form reserves nearer the surface. If the outermost layer cracks open, the decrease in pressure from these reserves to space causes a plume to shoot out. Roughly 400 pounds (200 kilograms) of water vapor is lost every second in the plumes, with smaller amounts being lost as ice grains. The team calculates the water reserves must have large evaporating surfaces, or they would freeze easily and stop the plumes.

"This finding is a crucial new piece of evidence showing that environmental conditions favorable to the emergence of life can be sustained on icy bodies orbiting gas giant planets," said Nicolas Altobelli, the European Space Agency's project scientist for Cassini.

Cassini's ultraviolet imaging spectrograph also recently obtained complementary results that support the presence of a subsurface ocean. A team of Cassini researchers led by Candice Hansen of the Planetary Science Institute in Tucson, Ariz., measured gas shooting out of distinct jets originating in the moon's south polar region at five to eight times the speed of sound, several times faster than previously measured. These observations of distinct jets, from a 2010 flyby, are consistent with results showing a difference in composition of ice grains close to the moon's surface and those that made it out to the E ring. That paper was published in the June 9 issue of Geophysical Research Letters.

"Without an orbiter like Cassini to fly close to Saturn and its moons -- to taste salt and feel the bombardment of ice grains -- scientists would never have known how interesting these outer solar system worlds are," said Linda Spilker, NASA's Cassini project scientist at the Jet Propulsion Laboratory in Pasadena, Calif.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The mission is managed by JPL for NASA's Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology, Pasadena.

For more information about Cassini, visit:
http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov

Contacts

Jia-Rui Cook 818-354-0850

Jet Propulsion Laboratory, Pasadena, Calif.
jccook@jpl.nasa.gov

Dwayne C. Brown 202-358-1726
NASA Headquarters, Washington
dwayne.c.brown@nasa.gov

Markus Bauer 011-31-71-565-6799
European Space Agency, Noordwijk, the Netherlands
markus.bauer@esa.int

More aboutCassini Captures Ocean-Like Spray at Saturn Moon