Showing posts with label Tarantula Nebula. Show all posts
Showing posts with label Tarantula Nebula. Show all posts

Close Encounter with the Tarantula

Posted by carsimulator on Tuesday, August 7, 2012

Tarantula Nebula
Credit: ESA/Hubble& NASA
Acknowledgement: Judy Schmidt

Turning its 2.4-metre eye to the Tarantula Nebula, the NASA/ESA Hubble Space Telescope has taken this close-up of the outskirts of the main cloud of the Nebula.

The bright wispy structures are the signature of an environment rich in ionised hydrogen gas, called H II by astronomers. In reality these appear red, but the choice of filters and colours of this image, which includes exposures both in visible and infrared light, make the gas appear green.

These regions contain recently formed stars, which emit powerful ultraviolet radiation that ionises the gas around them. These clouds are ephemeral as eventually the stellar winds from the newborn stars and the ionisation process will blow away the clouds, leaving stellar clusters like the Pleiades.

Located in the Large Magellanic Cloud, one of our neighbouring galaxies, and situated at a distance of 170 000 light-years away from Earth, the Tarantula Nebula is the brightest known nebula in the Local Group of galaxies. It is also the largest (around 650 light-years across) and most active star-forming region known in our group of galaxies, containing numerous clouds of dust and gas and two bright star clusters. A recent Hubble image shows a large part of the nebula immediately adjacent to this field of view.

The cluster at the Tarantula nebula’s centre is relatively young and very bright. While it is outside the field of view of this image, the energy from it is responsible for most of the brightness of the Nebula, including the part we see here. The nebula is in fact so luminous that if it were located within 1000 light-years from Earth, it would cast shadows on our planet.

The Tarantula Nebula was host to the closest supernova ever detected since the invention of the telescope, supernova 1987A, which was visible to the naked eye.

The image was produced by Hubble’s Advanced Camera for Surveys, and has a field of view of approximately 3.3 by 3.3 arcminutes.

A version of this image was entered into the Hubble’s Hidden Treasures Image Processing Competition by contestant Judy Schmidt. Hidden Treasures is an initiative to invite astronomy enthusiasts to search the Hubble archive for stunning images that have never been seen by the general public. The competition has now closed and the results will be published soon.

More aboutClose Encounter with the Tarantula

Hubble's Panoramic View of a Turbulent Star-making Region

Posted by carsimulator on Tuesday, April 17, 2012

PR Image heic1206a
Hubble's Panoramic View of a Star-Forming Region

PR Image heic1206b
Close-up images of features in the Tarantula Nebula

Labelled view of the Tarantula Nebula

Video


PR Video heic1206a
Hubblecast 54: 22 years in images

Several million stars are vying for attention in this NASA/ESA Hubble Space Telescope image of a raucous stellar breeding ground in 30 Doradus, located in the heart of the Tarantula nebula.

30 Doradus is the brightest star-forming region in our galactic neighbourhood and home to the most massive stars ever seen. The nebula resides 170 000 light-years away in the Large Magellanic Cloud, a small, satellite galaxy of our Milky Way. No known star-forming region in our galaxy is as large or as prolific as 30 Doradus.

The image comprises one of the largest mosaics ever assembled from Hubble photos and consists of observations taken by Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys, combined with observations from the European Southern Observatory’s MPG/ESO 2.2-metre telescope that trace the location of glowing hydrogen and oxygen.

The image is being released to celebrate Hubble’s 22nd anniversary.

The stars in this image add up to a total mass millions of times bigger than that of our Sun. The image is roughly 650 light-years across and contains some rambunctious stars, from one of the fastest rotating stars to the speediest and most massive runaway star.

The nebula is close enough to Earth that Hubble can resolve individual stars, giving astronomers important information about the stars’ birth and evolution. Many small galaxies have more spectacular starbursts, but the Large Magellanic Cloud’s 30 Doradus is one of the only star-forming regions that astronomers can study in detail. The star-birthing frenzy in 30 Doradus may be partly fueled by its close proximity to its companion galaxy, the Small Magellanic Cloud.

The image reveals the stages of star birth, from embryonic stars a few thousand years old still wrapped in dark cocoons of dust and gas to behemoths that die young in supernova explosions. 30 Doradus is a star-forming factory, churning out stars at a furious pace over millions of years. The Hubble image shows star clusters of various ages, from about 2 million to about 25 million years old.

The region’s sparkling centerpiece is a giant, young star cluster named NGC 2070, only 2 million to 3 million years old. Its stellar inhabitants number roughly 500 000. The cluster is a hotbed for young, massive stars. Its dense core, known as RMC 136, is packed with some of the heftiest stars found in the nearby Universe, weighing more than 100 times the mass of our Sun.

The massive stars are carving deep cavities in the surrounding material by unleashing a torrent of ultraviolet light, which is etching away the enveloping hydrogen gas cloud in which the stars were born. The image reveals a fantasy landscape of pillars, ridges, and valleys. Besides sculpting the gaseous terrain, the brilliant stars also may be triggering a successive generation of offspring.

When the radiation hits dense walls of gas, it creates shocks, which may be generating a new wave of star birth.

The colours come from the glowing hot gas that dominates regions of the image. Red signifies hydrogen gas and blue, oxygen.

The image was made from 30 separate fields, 15 from each camera. Hubble made the observations in October 2011. Both cameras were making observations at the same time.
Notes

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

Image credit: NASA, ESA, D. Lennon and E. Sabbi (ESA/STScI), J. Anderson, S. E. de Mink, R. van der Marel, T. Sohn, and N. Walborn (STScI), N. Bastian (Excellence Cluster, Munich), L. Bedin (INAF, Padua), E. Bressert (ESO), P. Crowther (Sheffield), A. de Koter (Amsterdam), C. Evans (UKATC/STFC, Edinburgh), A. Herrero (IAC, Tenerife), N. Langer (AifA, Bonn), I. Platais (JHU) and H. Sana (Amsterdam)

Links
Images of Hubble
NASA release

Contacts

Oli Usher
Hubble/ESA
Garching, Germany
Tel: +49-89-3200-6855
Email: ousher@eso.org

More aboutHubble's Panoramic View of a Turbulent Star-making Region

VLT Finds Fastest Rotating Star

Posted by carsimulator on Monday, December 5, 2011

PR Image eso1147a
VFTS 102: the fastest rotating star

PR Image eso1147b
Artist’s impression of the fastest rotating star

VFTS 102: the fastest rotating massive star (unannotated)

Wide-field view of the sky around VFTS 102: the fastest rotating massive star

ESO's Very Large Telescope has picked up the fastest rotating star found so far. This massive bright young star lies in our neighbouring galaxy, the Large Magellanic Cloud, about 160 000 light-years from Earth. Astronomers think that it may have had a violent past and has been ejected from a double star system by its exploding companion.

An international team of astronomers has been using ESO’s Very Large Telescope at the Paranal Observatory in Chile, to make a survey of the heaviest and brightest stars in the Tarantula Nebula (eso1117), in the Large Magellanic Cloud. Among the many brilliant stars in this stellar nursery the team has spotted one, called VFTS 102 [1], that is rotating at more than two million kilometres per hour — more than three hundred times faster than the Sun [2] and very close to the point at which it would be torn apart due to centrifugal forces. VFTS 102 is the fastest rotating star known to date [3].

The astronomers also found that the star, which is around 25 times the mass of the Sun and about one hundred thousand times brighter, was moving through space at a significantly different speed from its neighbours [4].

“The remarkable rotation speed and the unusual motion compared to the surrounding stars led us to wonder if this star had had an unusual early life. We were suspicious.” explains Philip Dufton (Queen’s University Belfast, Northern Ireland, UK), lead author of the paper presenting the results.

This difference in speed could imply that VFTS 102 is a runaway star — a star that has been ejected from a double star system after its companion exploded as a supernova. This idea is supported by two further clues: a pulsar and an associated supernova remnant in its vicinity [5].

The team has developed a possible back story for this very unusual star. It could have started life as one component of a binary star system. If the two stars were close, gas from the companion could have streamed over and in the process the star would have spun faster and faster. This would explain one unusual fact — why it is rotating so fast. After a short lifetime of about ten million years, the massive companion would have exploded as a supernova — which could explain the characteristic gas cloud known as a supernova remnant found nearby. The explosion would also have led to the ejection of the star and could explain the third anomaly — the difference between its speed and that of other stars in the region. As it collapsed, the massive companion would have turned into the pulsar that is observed today, and which completes the solution to the puzzle.

Although the astronomers cannot yet be sure that this is exactly what happened, Dufton concludes “This is a compelling story because it explains each of the unusual features that we’ve seen. This star is certainly showing us unexpected sides of the short, but dramatic lives of the heaviest stars.”

Notes

[1] The name VFTS102 refers to the VLT-FLAMES Tarantula Survey made using the Fibre Large Array Multi Element Spectrograph (FLAMES) on ESO’s Very Large Telescope.

[2] An aircraft travelling at this speed would take about one minute to circle the Earth at the equator.

[3] Some stars end their lives as compact objects such as pulsars (see note [5]), which may spin much more rapidly than VFTS 102, but they are also very much smaller and denser and do not shine by thermonuclear reactions like normal stars.

[4] VFTS 102 is moving at roughly 228 kilometres per second, which is slower than other similar stars in the region by about 40 kilometres per second.

[5] Pulsars are the result of supernovae. The core of the star collapses to a very small size creating a neutron star which spins very rapidly and emits powerful jets of radiation. These jets create a regular “pulse” as seen from Earth as the star rotates around its axis. The associated supernova remnant is a characteristic cloud of gas blown away by the shock wave resulting from the collapse of the star into a neutron star.
More information

This research was presented in a paper in the Astrophysical Journal Letters, “The VLT-FLAMES Tarantula Survey: The fastest rotating O-type star and shortest period LMC pulsar — remnants of a supernova disrupted binary?”, by Philip L. Dufton et al.

The team is composed of P.L. Dufton (Astrophysics Research Centre, Queen’s University Belfast (ARC/QUB), UK), P.R. Dunstall (ARC/QUB, UK), C.J. Evans (UK Astronomy Technology Centre, Royal Observatory Edinburgh (ROE), UK), I. Brott (University of Vienna, Department of Astronomy, Austria), M. Cantiello (Argelander Institut fur Astronomie der Universitat Bonn, Germany, Kavli Institute for Theoretical Physics, University of California, USA), A. de Koter (Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, The Netherlands), S.E. de Mink (Space Telescope Science Institute, USA), M. Fraser (ARC/QUB, UK), V. Henault-Brunet (Scottish Universities Physics Alliance (SUPA), Institute for Astronomy, University of Edinburgh, ROE, UK), I.D. Howarth (Department of Physics & Astronomy, University College London, UK), N. Langer (Argelander Institut fur Astronomie der Universitat Bonn, Germany), D.J. Lennon (ESA, Space Telescope Science Institute, USA), N. Markova (Institute of Astronomy with NAO, Bulgaria), H. Sana (Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, The Netherlands), W.D. Taylor (SUPA, Institute for Astronomy, University of Edinburgh, ROE, UK).

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 40-metre-class European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links
Published paper in ApJL
Photos of ESO’s Very Large Telescope

Contacts

Philip Dufton
Queen's University of Belfast
Belfast, UK
Tel: +44 028 9097 3552
Email: P.Dufton@qub.ac.uk

Richard Hook
ESO, La Silla, Paranal, E-ELT & Survey Telescopes Press Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

More aboutVLT Finds Fastest Rotating Star

Young Stars Take a Turn in the Spotlight

Posted by carsimulator on Wednesday, September 7, 2011

The star cluster NGC 2100 in the Large Magellanic Cloud

PR Image eso1133b
The star cluster NGC 2100 in the constellation of Dorado

PR Image eso1133c
The star cluster NGC 2100 in context

PR Video eso1133a
Zooming in on the star cluster NGC 2100 in the Large Magellanic Cloud

ESO’s New Technology Telescope (NTT) has captured a striking image of the open cluster NGC 2100. This brilliant star cluster is around 15 million years old, and located in the Large Magellanic Cloud, a nearby satellite galaxy of the Milky Way. The cluster is surrounded by glowing gas from the nearby Tarantula Nebula.

Observers often overlook NGC 2100 because of its close proximity to the impressive Tarantula Nebula (eso0650) and the super star cluster RMC 136 (eso1030). The glowing gas of the Tarantula Nebula even tries to steal the limelight in this image — the bright colours here are the nebula’s outskirts. This new picture was created from exposures through several different colour filters using the EMMI instrument [1] on the New Technology Telescope at ESO’s La Silla Observatory in Chile. The stars are shown in their natural colours, while light from glowing ionised hydrogen (shown here in red) and oxygen (shown in blue) is overlaid.

The colours that appear in nebulae depend on the temperatures of the stars lighting them up. The hot young stars in the Tarantula Nebula, which lie in the super star cluster RMC 136, are above and to the right of this image, and are powerful enough to cause oxygen to glow [2] showing up as blue nebulosity in this picture. Below NGC 2100 the red glow indicates either that the outer reaches of the influence of the hot stars of RMC 136 has been reached, or that cooler, and older, stars, that are only able to excite hydrogen are the dominant influence in this region. The stars that make up NGC 2100 are older and less energetic, and hence have little or no nebulosity associated with them.

Star clusters are groups of stars that formed around the same time from a single cloud of gas and dust. The stars with the most mass tend to form in the centre of the cluster, while those with less mass dominate the outer regions. This, along with the greater number of stars concentrated in the centre, makes the middle of the cluster brighter than the outer regions.

NGC 2100 is an open cluster, which means its stars are relatively loosely bound by gravity. These clusters have a lifespan measured in tens or hundreds of millions of years, as they eventually disperse through gravitational interaction with other bodies. Globular clusters, which look similar to the untrained eye, contain many more older stars and are much more tightly bound, and so have far longer lifespans: many globular clusters have been measured to be almost as old as the Universe itself. So while NGC 2100 might be older than its neighbours in the Large Magellanic Cloud, it is still a youngster by the standards of star clusters.

Data for this image of the under-appreciated young cluster were selected from the depths of ESO’s data archives by Hidden Treasures entrant David Roma as part of the astrophotography competition held by ESO in 2010 [3].

Notes

[1] EMMI stands for ESO Multi Mode Instrument. It is both a camera for imaging and a spectrograph.

[2] Most of the glow from oxygen comes from oxygen atoms that have lost two electrons. This strong emission is very common in nebulae but was mysterious to early astronomical spectroscopists and was initially thought to be coming from a new element given the name Nebulium.

[3] ESO’s Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO’s vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. To find out more about Hidden Treasures, visit http://www.eso.org/public/outreach/hiddentreasures/.

More information

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 40-metre-class European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links
Photos of the NTT and La Silla Observatory
David Roma’s Hidden Treasures image

Contacts

Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

More aboutYoung Stars Take a Turn in the Spotlight