Showing posts with label Herbig-Haro (HH) objects. Show all posts
Showing posts with label Herbig-Haro (HH) objects. Show all posts

NASA's Hubble Views a Cosmic Skyrocket

Posted by carsimulator on Tuesday, July 3, 2012

HH 11o
Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)
Highest-quality download options

Resembling a Fourth of July skyrocket, Herbig-Haro 110 is a geyser of hot gas from a newborn star that splashes up against and ricochets off the dense core of a cloud of molecular hydrogen. Although the plumes of gas look like whiffs of smoke, they are actually billions of times less dense than the smoke from a July 4 firework. This Hubble Space Telescope photo shows the integrated light from plumes, which are light-years across.

Herbig-Haro (HH) objects come in a wide array of shapes, but the basic configuration stays the same. Twin jets of heated gas, ejected in opposite directions away from a forming star, stream through interstellar space. Astronomers suspect that these outflows are fueled by gas accreting onto a young star surrounded by a disk of dust and gas. The disk is the "fuel tank," the star is the gravitational engine, and the jets are the exhaust.

When these energetic jets slam into colder gas, the collision plays out like a traffic jam on the interstate. Gas within the shock front slows to a crawl, but more gas continues to pile up as the jet keeps slamming into the shock from behind. Temperatures climb sharply, and this curving, flared region starts to glow. These "bow shocks" are so named because they resemble the waves that form at the front of a boat.

In the case of the single HH 110 jet, astronomers observe a spectacular and unusual permutation on this basic model. Careful study has repeatedly failed to find the source star driving HH 110, and there may be good reason for this: perhaps the HH 110 outflow is itself generated by another jet.

Astronomers now believe that the nearby HH 270 jet grazes an immovable obstacle — a much denser, colder cloud core — and gets diverted off at about a 60-degree angle. The jet goes dark and then reemerges, having reinvented itself as HH 110.

The jet shows that these energetic flows are like the erratic outbursts from a Roman candle. As fast-moving blobs of gas catch up and collide with slower blobs, new shocks arise along the jet's interior. The light emitted from excited gas in these hot blue ridges marks the boundaries of these interior collisions. By measuring the current velocity and positions of different blobs and hot ridges along the chain within the jet, astronomers can effectively "rewind" the outflow, extrapolating the blobs back to the moment when they were emitted. This technique can be used to gain insight into the source star's history of mass accretion.

This image is a composite of data taken with Hubble's Advanced Camera for Surveys in 2004 and 2005 and the Wide Field Camera 3 in April 2011.

For additional information, contact:

Ray Villard
Space Telescope Science Institute, Baltimore, Md.
410-338-4514
villard@stsci.edu

Zolt Levay
Space Telescope Science Institute, Baltimore, Md.
410-338-4907
levay@stsci.edu

More aboutNASA's Hubble Views a Cosmic Skyrocket

Hubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars

Posted by carsimulator on Wednesday, August 31, 2011

Signatures of Star Birth

Credit: NASA, ESA, and P. Hartigan (Rice University)



Object Name: HH 34 Jet

Credit: NASA, ESA, and P. Hartigan (Rice University)



Stars aren't shy about sending out birth announcements. They fire off energetic jets of glowing gas traveling at supersonic speeds in opposite directions through space.



Although astronomers for decades have looked at still pictures of stellar jets, they now can watch movies of them, thanks to NASA's Hubble Space Telescope.



A diverse team of scientists led by astronomer Patrick Hartigan of Rice University in Houston, Texas, has collected enough high-resolution Hubble images over a 14-year period to stitch together time-lapse movies of young jets ejected from three stars.



The moving pictures offer a unique view of stellar phenomena that move and change over just a few years. Most astronomical processes change over timescales that are much longer than a human lifetime.



The movies reveal the motion of the speedy outflows as they tear through their interstellar environments. Never-before-seen details in the jets' structure include knots of gas brightening and dimming over time and collisions between fast-moving and slow-moving material, creating glowing arrowhead features. These phenomena are providing clues about the final stages of a star's birth, offering a peek at how our Sun behaved 4.5 billion years ago.



"For the first time we can actually observe how these jets interact with their surroundings by watching these time-lapse movies," said Hartigan. "Those interactions tell us how young stars influence the environments out of which they form. With movies like these, we can now compare observations of jets with those produced by computer simulations and laboratory experiments to see what aspects of the interactions we understand and what parts we don't understand."



Hartigan's team's results appeared in the July 20, 2011 issue of The Astrophysical Journal.



Jets are an active, short-lived phase of star formation, lasting only about 100,000 years. They are called Herbig-Haro (HH) objects, named in honor of George Herbig and Guillermo Haro, who studied the outflows in the 1950s. Astronomers don't know what role jets play in the star-formation process or exactly how the star unleashes them.



A star forms from a collapsing cloud of cold hydrogen gas. As the star grows, it gravitationally attracts more matter, creating a large spinning disk of gas and dust around it. Eventually, planets may arise within the disk as dust clumps together.



The disk material gradually spirals onto the star and escapes as high-velocity jets along the star's spin axis. The speedy jets may initially be confined to narrow beams by the star's powerful magnetic field. The jet phase stops when the disk runs out of material, usually a few million years after the star's birth.



Hartigan and his colleagues used the Wide Field Planetary Camera 2 to study jets HH 1, HH 2, HH 34, HH 46, and HH 47. HH 1-HH 2 and HH 46-HH 47 are pairs of jets emanating in opposite directions from single stars. Hubble followed the jets over three epochs: HH 1 and HH 2 in 1994, 1997, and 2007; HH 34 in 1994, 1998, and 2007; and HH 46 and HH 47 in 1994, 1999, and 2008. The jets are roughly 10 times the width of our solar system and zip along at more than 440,000 miles an hour (700,000 kilometers an hour).



All of the outflows are roughly 1,350 light-years from Earth. HH 34, HH 1, and HH 2 reside near the Orion Nebula, in the northern sky. HH 46 and HH 47 are in the southern constellation Vela.



Computer software wove together the years' worth of observations, generating movies that show continuous motion. The movies support previous observations revealing that the twin jets are not ejected in a steady stream, like water flowing from a garden hose. Instead, they are launched sporadically in clumps. The beaded-jet structure might be like a "ticker tape," recording how material episodically fell onto the star.



The movies show that the clumpy gas in the jets is moving at different speeds like traffic on a freeway. When fast-moving blobs "rear-end" slower gas, bow shocks arise as the material heats up. Bow shocks are glowing waves of material similar to waves produced by the bow of a ship plowing through water. In HH 2, for example, several bow shocks can be seen where several fast-moving clumps bunch up like cars in a traffic jam. In another jet, HH 34, a grouping of merged bow shocks reveals regions that brighten and fade over time as the heated material cools where the shocks intersect.



In other areas of the jets, bow shocks form from encounters with the surrounding dense gas cloud. In HH 1 a bow shock appears at the top of the jet as it grazes the edge of a dense gas cloud. New glowing knots of material also appear. These knots may represent gas from the cloud being swept up by the jet, just as a swift-flowing river pulls along mud from the shoreline.



The movies also provide evidence that the inherent clumpy nature of the jets begins near the newborn stars. In HH 34 Hartigan traced a glowing knot to within about 9 billion miles of the star.



"Taken together, our results paint a picture of jets as remarkably diverse objects that undergo highly structured interactions between material within the outflow and between the jet and the surrounding gas," Hartigan explained. "This contrasts with the bulk of the existing simulations which depict jets as smooth systems."



The details revealed by Hubble were so complex that Hartigan consulted with experts in fluid dynamics from Los Alamos National Laboratory in New Mexico, the Atomic Weapons Establishment in England, and General Atomics in San Diego, Calif., as well as computer specialists from the University of Rochester in New York. Motivated by the Hubble results, Hartigan's team is now conducting laboratory experiments at the Omega Laser facility in New York to understand how supersonic jets interact with their environment.



"The fluid dynamicists immediately picked up on an aspect of the physics that astronomers typically overlook, and that led to a different interpretation for some of the features we were seeing," Hartigan explained. "The scientists from each discipline bring their own unique perspectives to the project, and having that range of expertise has proved invaluable for learning about this critical phase of stellar evolution."



Hartigan's research team consists of Adam Frank of the University of Rochester in New York; John Foster and Paula Rosen of the Atomic Weapons Establishment in Aldermaston, England; Bernie Wilde, Rob Coker, and Melissa Douglas of Los Alamos National Laboratory in New Mexico; and Brent Blue and Freddy Hansen of General Atomics in San Diego, Calif.



CONTACT



Donna Weaver / Ray Villard

Space Telescope Science Institute, Baltimore, Md.

410-338-4493 / 410-338-4514

dweaver@stsci.edu / villard@stsci.edu



Jade Boyd

Rice University, Houston, Texas

713-348-6778

jadeboyd@rice.edu



Patrick Hartigan

Rice University, Houston, Texas

713-348-2245

hartigan@rice.edu

More aboutHubble Movies Provide Unprecedented View of Supersonic Jets from Young Stars