Showing posts with label Kepler Mission. Show all posts
Showing posts with label Kepler Mission. Show all posts

Planetrise: Alien World Looms Large in its Neighbor's Sky

Posted by carsimulator on Thursday, June 21, 2012

In this artist's conception, a "hot Neptune" known as Kepler-36c looms in the sky of its neighbor, the rocky world Kepler-36b. The two planets have repeated close encounters, experiencing a conjunction every 97 days on average. At that time, they are separated by less than 5 Earth-Moon distances. Such close approaches stir up tremendous gravitational tides that squeeze and stretch both planets, which may promote active volcanism on Kepler-36b. Credit: David A. Aguilar (CfA).

over the horizon. Now imagine that instead of the Moon, a gas giant planet spanning three times more sky loomed over the molten landscape of a lava world. This alien vista exists in the newly discovered two-planet system of Kepler-36.

"These two worlds are having close encounters," said Josh Carter, a Hubble Fellow at the Harvard-Smithsonian Center for Astrophysics (CfA).

"They are the closest to each other of any planetary system we've found," added co-author Eric Agol of the University of Washington.

Carter, Agol and their colleagues report their discovery in the June 21st Science Express.

They spotted the planets in data from NASA's Kepler spacecraft, which can detect a planet when it passes in front of, and briefly reduces the light coming from, its parent star.

The newfound system contains two planets circling a subgiant star much like the Sun except several billion years older. The inner world, Kepler-36b, is a rocky planet 1.5 times the size of Earth and weighing 4.5 times as much. It orbits about every 14 days at an average distance of less than 11 million miles.

The outer world, Kepler-36c, is a gaseous planet 3.7 times the size of Earth and weighing 8 times as much. This "hot Neptune" orbits once each 16 days at a distance of 12 million miles.

The two planets experience a conjunction every 97 days on average. At that time, they are separated by less than 5 Earth-Moon distances. Since Kepler-36c is much larger than the Moon, it presents a spectacular view in its neighbor's sky. (Coincidentally, the smaller Kepler-36b would appear about the size of the Moon when viewed from Kepler-36c.) Such close approaches stir up tremendous gravitational tides that squeeze and stretch both planets.

Researchers are struggling to understand how these two very different worlds ended up in such close orbits. Within our solar system, rocky planets reside close to the Sun while the gas giants remain distant.

Although Kepler-36 is the first planetary system found to experience such close encounters, it undoubtedly won't be the last.

"We're wondering how many more like this are out there," said Agol.

"We found this one on a first quick look," added Carter. "We're now combing through the Kepler data to try to locate more."

This result was made possible with asteroseismology. Asteroseismology is the study of stars by observing their natural oscillations. Sunlike stars resonate like musical instruments, due to sound waves trapped in their interiors. And just like a musical instrument, the larger the star, the "deeper" are its resonances. This trapped sound makes the stars gently breathe in and out, or oscillate.

Co-author Bill Chaplin (University of Birmingham, UK) noted, "Kepler-36 shows beautiful oscillations. By measuring the oscillations we were able to measure the size, mass and age of the star to exquisite precision."

He added, "Without asteroseismology, it would not have been possible to place such tight constraints on the properties of the planets."

The research was funded by NASA, the Space Telescope Science Institute and the National Science Foundation.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu

Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

More aboutPlanetrise: Alien World Looms Large in its Neighbor's Sky

Small Planets Don't Need Stars with Heavy Metal Content to Form

Posted by carsimulator on Wednesday, June 13, 2012

The artist conception shows a newly formed star surrounded by a swirling protoplanetary disk of dust and gas. Debris coalesces to create rocky 'planetesimals' that collide and grow to eventually form planets. The results of this study show that small planets form around stars with a wide range of heavy element content suggesting that their existence might be widespread in the galaxy. Credit: University of Copenhagen/Lars Buchhave. Download Video

MOFFETT FIELD, Calif. -- The formation of small worlds like Earth previously was thought to occur mostly around stars rich in heavy elements such as iron and silicon. However, new ground-based observations, combined with data collected by NASA's Kepler space telescope, shows small planets form around stars with a wide range of heavy element content and suggests they may be widespread in our galaxy.

A research team led by Lars A. Buchhave, an astrophysicist at the Niels Bohr Institute and the Centre for Star and Planet Formation at the University of Copenhagen, studied the elemental composition of more than 150 stars harboring 226 planet candidates smaller than Neptune.

"I wanted to investigate whether small planets needed a special environment in order to form, like the giant gas planets, which we know preferentially develop in environments with a high content of heavy elements," said Buchhave. "This study shows that small planets do not discriminate and form around stars with a wide range of heavy metal content, including stars with only 25 percent of the sun's metallicity."

Astronomers refer to all chemical elements heavier than hydrogen and helium as metals. They define metallicity as the metal content of heavier elements in a star. Stars with a higher fraction of heavy elements than the sun are considered metal-rich. Stars with a lower fraction of heavy elements are considered metal-poor.

Planets are created in disks of gas and dust around new stars. Planets like Earth are composed almost entirely of elements such as iron, oxygen, silicon and magnesium. The metallicity of a star mirrors the metal content of the planet-forming disk. Astronomers have hypothesized that large quantities of heavy elements in the disk would lead to more efficient planet formation. It has long been noted that giant planets with short orbital periods tend to be associated with metal-rich stars.

Unlike gas giants, the occurrence of smaller planets is not strongly dependent on the heavy element content of their host stars. Planets up to four times the size of Earth can form around stars with a wide range of heavy element content, including stars with a lower metallicity than the sun. The findings are described in a new study published in the journal Nature.

"Kepler has identified thousands of planet candidates, making it possible to study big-picture questions like the one posed by Lars. Does nature require special environments to form Earth-size planets?" said Natalie Batalha, Kepler mission scientist at NASA's Ames Research Center at Moffett Field, Calif. "The data suggest that small planets may form around stars with a wide range of metallicities -- that nature is opportunistic and prolific, finding pathways we might otherwise have thought difficult."

The ground-based spectroscopic observations for this study were made at the Nordic Optical Telescope on La Palma in the Canary Islands; Fred Lawrence Whipple Observatory on Mt. Hopkins in Ariz.; McDonald Observatory at the University of Texas at Austin; and W.M. Keck Observatory atop Mauna Kea in Hawaii.

Launched in March 2009, Kepler searches for planets by continuously monitoring more than 150,000 stars, looking for telltale dips in their brightness caused by passing, or transiting, planets. At least three transits are required to verify a signal as a planet. Follow-up observations from ground-based telescopes are also needed to confirm a candidate as a planet.

Ames manages Kepler's ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed the Kepler mission development.
The artist conception shows a newly formed star surrounded by a swirling protoplanetary disk of dust and gas. Debris coalesces to create rocky 'planetesimals' that collide and grow to eventually form planets. The results of this study show that small planets form around stars with a wide range of heavy element content suggesting that their existence might be widespread in the galaxy. Credit: University of Copenhagen/Lars Buchhave

Ball Aerospace & Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.

The Space Telescope Science Institute in Baltimore archives hosts and distributes Kepler science data. Kepler is NASA's 10th Discovery Mission and is funded by NASA's Science Mission Directorate at the agency's headquarters in Washington.

For more information about the Kepler mission, visit: http://www.nasa.gov/kepler

Michele Johnson
Ames Research Center, Moffett Field, Calif.
650-604-4789
michele.johnson@nasa.gov

More aboutSmall Planets Don't Need Stars with Heavy Metal Content to Form

NASA’s Kepler Detects Potential Evaporating Planet Candidate

Posted by carsimulator on Friday, May 18, 2012

The artist's concept depicts a comet-like tail of a possible disintegrating super Mercury-size planet candidate as it transits its parent star named KIC 12557548. At an orbital distance of only twice the diameter of its star, the surface temperature of the potential planet is estimated to be a sweltering 3,300 degrees Fahrenheit. At such a high temperature, the surface would melt and evaporate. The energy from the resulting wind would be enough to allow dust and gas to escape into space creating a trailing dusty effluence that intermittently blocks the starlight. Image credit: NASA/JPL-Caltech. Click here for full resolution.


A Curious Signature of a Potential Tiny World

The artist's animation depicts a possible disintegrating planet candidate as it orbits its star. Dust and gas ejected from the possible planet’s sweltering surface is theorized to form a comet-like tail of trailing material. The density of the tail can change dramatically, even over a single 15-hour orbit. Kepler finds planets by searching for the slight drop in brightness seen as they pass in front of their stars. Usually that drop is constant, but in this system, the variation seen from orbit to orbit hints at a dusty tail trailing a doomed world. Credit: NASA/JPL-Caltech

Astronomers may have detected evidence of a possible planet disintegrating under the searing heat of its host star located 1,500 light-years from Earth. Similar to a debris-trailing comet, the super Mercury-size planet candidate is theorized to fashion a dusty tail. But the tail won't last for long. Scientists calculate that, at the current rate of evaporation, the dusty world could be completely vaporized within 200 million years.

A research team led by Saul Rappaport, professor emeritus of physics at MIT, Boston, Mass., has identified an unusual light pattern emanating from a star named KIC 12557548 in the Kepler space telescope's field-of-view.

NASA's Kepler space telescope detects planets and planet candidates by measuring dips in the brightness of more than 150,000 stars to search for planets crossing in front, or transiting, their stars.

"The bizarre nature of the light output from this star with its precisely periodic transit-like features and highly variable depths exemplifies how Kepler is expanding the frontiers of science in unexpected ways," said Jon Jenkins, Kepler co-investigator at the SETI Institute in Mountain View, Calif. "This discovery pulls back the curtain of how science works in the face of surprising data."

Orbiting a star smaller and cooler than our sun, the planet candidate completes its orbit in less than 16 hours-- making it one of the shortest orbits ever detected. At an orbital distance of only twice the diameter of its star, the surface temperature of the planet is estimated to be a smoldering 3,300 degrees Fahrenheit.

Scientists hypothesize that the star-facing side of the potentially rocky inferno is an ocean of seething magma. The surface melts and evaporates at such high temperatures that the energy from the resulting wind is enough to allow dust and gas to escape into space. This dusty effluence trails behind the doomed companion as it disintegrates around the star.

Additional follow-up observations are needed to confirm the candidate as a planet. The finding is published in The Astrophysical Journal and is available for download at: http://arxiv.org/abs/1201.2662

For more details on the finding visit: http://web.mit.edu/newsoffice/2012/dusty-exoplanet-0517.html

For more information about the Kepler mission, visit: http://www.nasa.gov/kepler

Michele Johnson
Phone Number: (650) 604-6982
Ames Research Center, Moffett Field, Calif.

More aboutNASA’s Kepler Detects Potential Evaporating Planet Candidate

NASA Extends Kepler, Spitzer, Planck Missions

Posted by carsimulator on Friday, April 6, 2012

From left to right, artist's concepts of the Spitzer, Planck and Kepler space telescopes. NASA extended Spitzer and Kepler for two additional years; and the U.S. portion of Planck, a European Space Agency mission, for one year. The relative sizes of the artist's concepts are not to scale. Image credit: NASA/JPL-Caltech. Larger image

PASADENA, Calif. -- NASA is extending three missions affiliated with the Jet Propulsion Laboratory in Pasadena, Calif. -- Kepler, the Spitzer Space Telescope and the U.S. portion of the European Space Agency's Planck mission -- as a result of the 2012 Senior Review of Astrophysics Missions.

The 2012 NASA Senior Review report, which includes these three missions and six others also being extended, is available at: http://science.nasa.gov/astrophysics/2012-senior-review/ .

"This means scientists can continue using the three spacecraft to study everything from the birth of the universe with Planck, and galaxies, stars, planets, comets and asteroids with Spitzer, while Kepler is determining what percentage of sun-like stars host potentially habitable Earth-like planets," said Michael Werner, the chief scientist for astronomy and physics at JPL.

Kepler has been approved for extension through fiscal year 2016, which ends Sept. 30, 2016. All fiscal year 2015 and 2016 decisions are for planning purposes and will be revisited in the 2014 Senior Review. The extension provides four additional years to find Earth-size planets in the habitable zone -- the region in a planetary system where liquid water could exist on the surface of the orbiting planet -- around sun-like stars in our galaxy.

Spitzer, launched in 2003, continues to provide the astronomical community with its unique infrared images. It has continued to explore the cosmos since running out of coolant, as expected, in 2009. Among its many duties during its warm mission, the observatory is probing the atmospheres of planets beyond our sun and investigating the glow of some of the most distant galaxies known. As requested by the project, Spitzer received two additional years of operations. Like other NASA missions, the Spitzer team will be able to apply for a further extension in 2014.

NASA will fund one additional year of U.S. participation in the European Space Agency's Planck mission, for the U.S. Planck data center and for operations of Planck's Low Frequency Instrument. Planck, launched in 2009, is gathering data from the very early universe, shortly after its explosive birth in a big bang. Planck's observations are yielding insight into the origin, evolution and fate of our universe. The U.S. Planck team will apply for additional funding after a third data release has been approved by the European consortiums.

Ames Research Center, Moffett Field, Calif., manages Kepler's ground system development, mission operations and science data analysis. JPL managed the Kepler mission's development. Ball Aerospace & Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes Kepler science data. Kepler is NASA's 10th Discovery mission and is funded by NASA's Science Mission Directorate at the agency's headquarters in Washington. For more information about the Kepler mission, visit: http://www.nasa.gov/kepler and http://kepler.nasa.gov .

JPL manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. For more information about Spitzer, visit: http://spitzer.caltech.edu and http://www.nasa.gov/spitzer .

Planck is a European Space Agency mission, with significant participation from NASA. NASA's Planck Project Office is based at JPL. JPL contributed mission-enabling technology for both of Planck's science instruments. European, Canadian and U.S. Planck scientists will work together to analyze the Planck data. More information is online at: http://www.nasa.gov/planck and http://www.esa.int/planck .

The California Institute of Technology in Pasadena, Calif., manages JPL for NASA.

Whitney Clavin 818-354-4673
Jet Propulsion Laboratory, Pasadena, Calif.
whitney.clavin@jpl.nasa.gov

More aboutNASA Extends Kepler, Spitzer, Planck Missions

NASA's Kepler Announces 11 Planetary Systems Hosting 26 Planets

Posted by carsimulator on Thursday, January 26, 2012

Kepler's Planetary Systems: The artist's rendering depicts the multiple planet systems discovered by NASA's Kepler mission. Image credit: NASA Ames/Jason Steffen, Fermilab Center for Particle Astrophysics.

Kepler's Planetary Systems' Orbits: The image shows an overhead view of orbital positions of the planets in systems with multiple transiting planets discovered by NASA's Kepler mission. Image credit: NASA Ames/Dan Fabrycky, University of California, Santa Cruz

NASA's Kepler mission has discovered 11 new planetary systems hosting 26 confirmed planets. These discoveries nearly double the number of verified Kepler planets and triple the number of stars known to have more than one planet that transits, or passes in front of, its host star. Such systems will help astronomers better understand how planets form.

The planets orbit close to their host stars and range in size from 1.5 times the radius of Earth to larger than Jupiter. Fifteen of them are between Earth and Neptune in size, and further observations will be required to determine which are rocky like Earth and which have thick gaseous atmospheres like Neptune. The planets orbit their host star once every six to 143 days. All are closer to their host star than Venus is to our sun.

"Prior to the Kepler mission, we knew of perhaps 500 exoplanets across the whole sky," said Doug Hudgins, Kepler program scientist at NASA Headquarters in Washington. "Now, in just two years staring at a patch of sky not much bigger than your fist, Kepler has discovered more than 60 planets and more than 2,300 planet candidates. This tells us that our galaxy is positively loaded with planets of all sizes and orbits."

Kepler identifies planet candidates by repeatedly measuring the change in brightness of more than 150,000 stars to detect when a planet passes in front of the star. That passage casts a small shadow toward Earth and the Kepler spacecraft.

“Confirming that the small decrease in the star's brightness is due to a planet requires additional observations and time-consuming analysis," said Eric Ford, associate professor of astronomy at the University of Florida and lead author of the paper confirming Kepler-23 and Kepler-24. “We verified these planets using new techniques that dramatically accelerated their discovery.”

Each of the new confirmed planetary systems contains two to five closely spaced transiting planets. In tightly packed planetary systems, the gravitational pull of the planets among themselves causes one planet to accelerate and another planet to decelerate along its orbit. The acceleration causes the orbital period of each planet to change. Kepler detects this effect by measuring the changes, or so-called Transit Timing Variations (TTVs).

Planetary systems with TTVs can be verified without requiring extensive ground-based observations, accelerating confirmation of planet candidates. The TTV detection technique also increases Kepler's ability to confirm planetary systems around fainter and more distant stars.

“By precisely timing when each planet transits its star, Kepler detected the gravitational tug of the planets on each other, clinching the case for ten of the newly announced planetary systems,” said Dan Fabrycky, Hubble Fellow at the University of California, Santa Cruz and lead author for a paper confirming Kepler-29, 30, 31 and 32."

Five of the systems (Kepler-25, Kepler-27, Kepler-30, Kepler-31 and Kepler-33) contain a pair of planets where the inner planet orbits the star twice during each orbit of the outer planet. Four of the systems (Kepler-23, Kepler-24, Kepler-28 and Kepler-32) contain a pairing where the outer planet circles the star twice for every three times the inner planet orbits its star.

“These configurations help to amplify the gravitational interactions between the planets, similar to how my sons kick their legs on a swing at the right time to go higher,” said Jason Steffen, the Brinson postdoctoral fellow at Fermilab Center for Particle Astrophysics in Batavia, Ill., and lead author of a paper confirming Kepler-25, 26, 27 and 28.

The system with the most planets among these discoveries is Kepler-33, a star that is older and more massive than our sun. Kepler-33 hosts five planets, ranging in size from 1.5 to 5 times that of Earth and all located closer to their star than any planet is to the sun.

The properties of a star provide clues for planet detection. The decrease in the star's brightness and duration of a planet transit combined with the properties of its host star present a recognizable signature. When astronomers detect planet candidates that exhibit similar signatures around the same star the likelihood of any of these planet candidates being a false positive is very low.

“The approach that was used to verify the Kepler-33 planets shows that the overall reliability of Kepler's candidate multiple transiting systems is quite high," said Jack Lissauer, planetary scientist at NASA Ames Research Center at Moffett Field, Calif., and lead author of the paper confirming Kepler-33. “This is a validation by multiplicity.”

  • These discoveries are published in the Astrophysical Journal and the Monthly Notices of the Royal Astronomical Society and can be viewed at:
  • J Lissauer et al - Almost All of Kepler's Multiple Planet Candidates are Planets, and Kepler-33 5-planet system
  • E Ford et al - Transit Timing Observations from Kepler: II. Confirmation of Two Multiplanet Systems via a Non-parametric Correlation Analysis. Confirms KOI-168=Kepler-23 and KOI 1102=Kepler-24
  • J Steffen et al - Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations
  • D Fabrycky et al - Transit Timing Observations From Kepler: IV. Confirmation Of 4 Multiple Planet Systems By Simple Physical Models
Ames Research Center in Moffett Field, Calif., manages Kepler's ground system development, mission operations and science data analysis. NASA’s Jet Propulsion Laboratory, Pasadena, Calif., managed the Kepler mission's development.

Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.

The Space Telescope Science Institute in Baltimore archives, hosts and distributes Kepler science data. Kepler is NASA's 10th Discovery Mission and is funded by NASA's Science Mission Directorate at the agency's headquarters in Washington.

For more information about the Kepler mission, visit: http://www.nasa.gov/kepler

Kepler's Planetary Systems in Motion: The animation shows an overhead view of the orbital position of the planets in systems with multiple transiting planets discovered by NASA's Kepler mission. All the colored planets have been verified. More vivid colors indicate planets that have been confirmed by their gravitational interactions with each other or the star. Several of these systems contain additional planet candidates (shown in grey) that have not yet been verified. Image credit: NASA Ames/Dan Fabrycky, University of California, Santa Cruz

Transit Timing Variations: The animation shows the difference between planet transit timing of single and multiple planet system. In tightly packed planetary systems, the gravitational pull of the planets among themselves causes one planet to accelerate and another planet to decelerate along its orbit. The acceleration causes the orbital period of each planet to change. Kepler detects this effect by measuring the change known as Transit Timing Variations (TTVs). Image credit: NASA Ames/Kepler mission


Michele Johnson
650-604-6982
NASA Ames Research Center
michele.johnson@nasa.gov

More aboutNASA's Kepler Announces 11 Planetary Systems Hosting 26 Planets

NASA's Kepler Mission Confirms Its First Planet in Habitable Zone of Sun-like Star

Posted by carsimulator on Monday, December 5, 2011

This artist's conception illustrates Kepler-22b, a planet known to comfortably circle in the habitable zone of a sun-like star. Image credit: NASA/Ames/JPL-Caltech. Click here for multiple resolutions.

This diagram compares our own solar system to Kepler-22, a star system containing the first "habitable zone" planet discovered by NASA's Kepler mission. Image credit: NASA/Ames/JPL-Caltech. Click here for multiple resolutions.

NASA's Kepler mission has confirmed its first planet in the "habitable zone," the region where liquid water could exist on a planet’s surface. Kepler also has discovered more than 1,000 new planet candidates, nearly doubling its previously known count. Ten of these candidates are near-Earth-size and orbit in the habitable zone of their host star. Candidates require follow-up observations to verify they are actual planets.

The newly confirmed planet, Kepler-22b, is the smallest yet found to orbit in the middle of the habitable zone of a star similar to our sun. The planet is about 2.4 times the radius of Earth. Scientists don't yet know if Kepler-22b has a predominantly rocky, gaseous or liquid composition, but its discovery is a step closer to finding Earth-like planets.

Previous research hinted at the existence of near-Earth-size planets in habitable zones, but clear confirmation proved elusive. Two other small planets orbiting stars smaller and cooler than our sun recently were confirmed on the very edges of the habitable zone, with orbits more closely resembling those of Venus and Mars.

"This is a major milestone on the road to finding Earth's twin," said Douglas Hudgins, Kepler program scientist at NASA Headquarters in Washington. "Kepler's results continue to demonstrate the importance of NASA's science missions, which aim to answer some of the biggest questions about our place in the universe."

Kepler discovers planets and planet candidates by measuring dips in the brightness of more than 150,000 stars to search for planets that cross in front, or "transit," the stars. Kepler requires at least three transits to verify a signal as a planet.

"Fortune smiled upon us with the detection of this planet," said William Borucki, Kepler principal investigator at NASA Ames Research Center at Moffett Field, Calif., who led the team that discovered Kepler-22b. "The first transit was captured just three days after we declared the spacecraft operationally ready. We witnessed the defining third transit over the 2010 holiday season."

The Kepler science team uses ground-based telescopes and the Spitzer Space Telescope to review observations on planet candidates the spacecraft finds. The star field that Kepler observes in the constellations Cygnus and Lyra can only be seen from ground-based observatories in spring through early fall. The data from these other observations help determine which candidates can be validated as planets.

Kepler-22b is located 600 light-years away. While the planet is larger than Earth, its orbit of 290 days around a sun-like star resembles that of our world. The planet's host star belongs to the same class as our sun, called G-type, although it is slightly smaller and cooler.

Of the 54 habitable zone planet candidates reported in February 2011, Kepler-22b is the first to be confirmed. This milestone will be published in The Astrophysical Journal.

The Kepler team is hosting its inaugural science conference at Ames Dec. 5-9, announcing 1,094 new planet candidate discoveries. Since the last catalog was released in February, the number of planet candidates identified by Kepler has increased by 89 percent and now totals 2,326. Of these, 207 are approximately Earth-size, 680 are super Earth-size, 1,181 are Neptune-size, 203 are Jupiter-size and 55 are larger than Jupiter.

The findings, based on observations conducted May 2009 to September 2010, show a dramatic increase in the numbers of smaller-size planet candidates.

Kepler observed many large planets in small orbits early in its mission, which were reflected in the February data release. Having had more time to observe three transits of planets with longer orbital periods, the new data suggest that planets one to four times the size of Earth may be abundant in the galaxy.

The number of Earth-size and super Earth-size candidates has increased by more than 200 and 140 percent since February, respectively.

There are 48 planet candidates in their star's habitable zone. While this is a decrease from the 54 reported in February, the Kepler team has applied a stricter definition of what constitutes a habitable zone in the new catalog, to account for the warming effect of atmospheres, which would move the zone away from the star, out to longer orbital periods.

"The tremendous growth in the number of Earth-size candidates tells us that we're honing in on the planets Kepler was designed to detect: those that are not only Earth-size, but also are potentially habitable," said Natalie Batalha, Kepler deputy science team lead at San Jose State University in San Jose, Calif. "The more data we collect, the keener our eye for finding the smallest planets out at longer orbital periods."

NASA's Ames Research Center manages Kepler's ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development.

Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.

The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data. Kepler is NASA's 10th Discovery Mission and is funded by NASA's Science Mission Directorate at the agency's headquarters.

Related links:
- NASA’s Kepler Mission
- Kepler Science Conference News Briefing Press Kit
- NASA’s Ames Research Center


Michele Johnson, 650-604-4789
NASA Ames Research Center
michele.johnson@nasa.gov

More aboutNASA's Kepler Mission Confirms Its First Planet in Habitable Zone of Sun-like Star

NOAO: New Planet Kepler-21b discovery a partnership of both space and ground-based observations

Posted by carsimulator on Wednesday, November 30, 2011

Figure 1: The Kepler field as seen in the sky over Kitt Peak National Observatory. The approximate position of HD 179070 is indicated by the circle (sky imaged using a diffraction grating to show spectra of brighter stars, credit J. Glaspey; telescopes imaged separately and combined, credit P. Marenfeld)

Figure 2: Kepler light curve of HD 179070 showing the eclipse of Kepler-21b. The data cover 15 months. The figure shows the binned, and phase folded-data based on 164 individual transits over-plotted by the model fit (red line).

The NASA Kepler Mission is designed to survey ahttp://www.blogger.com/img/blank.gif portion of our region of the Milky Way Galaxy to discover Earth-size planets in or near the “habitable zone,” the region in a planetary system where liquid water can exist, and determine how many of the billions of stars in our galaxy have such planets. It now has another planet to add to its growing list. A research team led by Steve Howell, NASA Ames Research Center, has shown that one of the brightest stars in the Kepler star field has a planet with a radius only 1.6 that of the earth’s radius and a mass no greater that 10 earth masses, circling its parent star with a 2.8 day period. With such a short period, and such a bright star, the team of over 65 astronomers (that included David Silva, Ken Mighell and Mark Everett of NOAO) needed multiple telescopes on the ground to support and confirm their Kepler observations. These included the 4 meter Mayall telescope and the WIYN telescope at Kitt Peak National Observatory. The accompanying figure shows the size of the Kepler field, seen over Kitt Peak.

With a period of only 2.8 days, this planet, designated Kepler-21b, is only about 6 million km away from its parent star. By comparison Mercury, the closest planet to the sun, has a period of 88 days and a distance from the sun almost ten times greater, or 57 million km. So Kepler 21b is far hotter than any place humans could venture. The team calculates that the temperature at the surface of the planet is about 1900 K, or 2960 F. While this temperature is nowhere near the habitable zone in which liquid water might be found, the planet’s size is approaching that of the earth.

The parent star, HD 179070, is quite similar to our sun: its mass is 1.3 solar masses, its radius is 1.9 solar radii, and its age, based on stellar models, is 2.84 billion years (or a bit younger than the sun’s 4.6 billion years). HD 179070 is spectral type F6 IV, a little hotter and brighter than the sun. By astronomical standards, HD 179070 is fairly close, at a distance from the sun of 352 light years. While it cannot be seen by the unaided eye, a small telescope can easily pick it out.

Part of the difficulty in detecting this planet is the realization, from the Kepler mission, that many stars show short period brightness oscillations. The effect of these must be removed from the stellar light in order to uncover the regular, but very small, dimming caused by the planet passing in front of the star. The Kepler mission observed this field for over 15 months, and the team combined the observations to enable them to detect this tiny, periodic signal. They also relied on spectroscopic and imaging data from a number of ground based telescopes. The attached figure 2 shows a light curve: a plot of the brightness of HD 179070 over time as the planet passes in front of it. This curve was built up over the many months of observing.

The results of this work have been accepted for publication in the Astrophysical Journal.

NOAO is operated by Association of Universities for Research in Astronomy Inc. (AURA) under a cooperative agreement with the National Science Foundation.

Science Contact

Dr. Steve Howell
NASA Ames Research Center
PO Box 1
M/S 244-30
Moffett Field, CA 94035
steve.b.howell@nasa.gov
650.604.4238

More aboutNOAO: New Planet Kepler-21b discovery a partnership of both space and ground-based observations