> > > Do the Milky Way’s companions spell trouble for dark matter?

Do the Milky Way’s companions spell trouble for dark matter?

Posted by carsimulator on Wednesday, April 25, 2012

The galaxy pair UGC 9618 / VV 340, two spiral galaxies at the beginning of a collision. Credit: NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

The Milky Way, the galaxy we live in, consists of around three hundred thousand million stars as well as large amounts of gas and dust arranged with arms in a flat disk that wind out from a central bar. The diameter of the main part of the Milky Way is about 100,000 light years, meaning that a beam of light takes 100,000 years to travel across it. A number of smaller satellite galaxies and spherical clusters of stars (so-called globular clusters) orbit at various distances from the main Galaxy.

Conventional models for the origin and evolution of the universe (cosmology) are based on the presence of ‘dark matter’, invisible material thought to make up about 23% of the content of the cosmos that has never been detected directly. In this model, the Milky Way is predicted to have far more satellite galaxies than are actually seen.

In their effort to understand exactly what surrounds our Galaxy, the scientists used a range of sources from twentieth century photographic plates to images from the robotic telescope of the Sloan Deep Sky Survey. Using all these data they assembled a picture that includes bright ‘classical’ satellite galaxies, more recently detected fainter satellites and the younger globular clusters.

“Once we had completed our analysis, a new picture of our cosmic neighbourhood emerged”, says Pawlowski. The astronomers found that all the different objects are distributed in a plane at right angles to the galactic disk. The newly-discovered structure is huge, extending from as close as 33,000 light years to as far away as one million light years from the centre of the Galaxy.

Team member Pavel Kroupa, professor for astronomy at the University of Bonn, adds “We were baffled by how well the distributions of the different types of objects agreed with each other”. As the different companions move around the Milky Way, they lose material, stars and sometimes gas, which forms long streams along their paths. The new results show that this lost material is aligned with the plane of galaxies and clusters too. “This illustrates that the objects are not only situated within this plane right now, but that they move within it”, says Pawlowski. “The structure is stable.”

The various dark matter models struggle to explain this arrangement. “In the standard theories, the satellite galaxies would have formed as individual objects before being captured by the Milky Way”, explains Kroupa. “As they would have come from many directions, it is next to impossible for them to end up distributed in such a thin plane structure.”

Postdoctoral researcher and team member Jan Pflamm-Altenburg suggests an alternative explanation. “The satellite galaxies and clusters must have formed together in one major event, a collision of two galaxies.” Such collisions are relatively common and lead to large chunks of galaxies being torn out due to gravitational and tidal forces acting on the stars, gas and dust they contain, forming tails that are the birthplaces of new objects like star clusters and dwarf galaxies.

Pawlowski adds, “We think that the Milky Way collided with another galaxy in the distant past. The other galaxy lost part of its material, material that then formed our Galaxy’s satellite galaxies and the younger globular clusters and the bulge at the galactic centre. The companions we see today are the debris of this 11 billion year old collision.”

Kroupa concludes by highlighting the wider significance of the new work. “Our model appears to rule out the presence of dark matter in the universe, threatening a central pillar of current cosmological theory. We see this as the beginning of a paradigm shift, one that will ultimately lead us to a new understanding of the universe we inhabit.”


Images, movie and captions

Images of two galaxies that are set to collide, a galaxy being torn apart in a collision and a movie showing the distribution of satellite galaxies and globular clusters around the Milky Way can be downloaded from http://www.astro.uni-bonn.de/~mpawlow/pr2012.html (The animation is also available on YouTube at http://youtu.be/nUwxv-WGfHM)


Science contacts

Dipl.-Phys. Marcel S. Pawlowski
Argelander-Institut fuer Astronomie der Universitaet Bonn
Tel: +49 228 73 3649
Email: mpawlow@astro.uni-bonn.de

Dr. Jan Pflamm-Altenburg
Argelander-Institut fuer Astronomie der Universitaet Bonn
Tel: +49 228 73 3461
Email: jpflamm@astro.uni-bonn.de

Professor Dr Pavel Kroupa
Argelander-Institut fuer Astronomie der Universitaet Bonn
Tel: 49 228 73 6140
Email: pavel@astro.uni-bonn.de


Media contact

Robert Massey
Royal Astronomical Society
Tel: +44 (0)20 7734 3307 x214
Mob: +44 (0)794 124 8035
Email: rm@ras.org.uk


Further information

The work appears in "The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the Milky Way", M. S. Pawlowski, J. Pflamm-Altenburg, P. Kroupa, Monthly Notices of the Royal Astronomical Society, in press. A preprint of the paper can be downloaded from http://arxiv.org/abs/1204.5176


Notes for editors

The Royal Astronomical Society

The Royal Astronomical Society (RAS: www.ras.org.uk), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organises scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 3500 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

Do the Milky Way’s companions spell trouble for dark matter? Gallery

Do the Milky Way’s companions spell trouble for dark matter? Do the Milky Way’s companions spell trouble for dark matter? Do the Milky Way’s companions spell trouble for dark matter? Do the Milky Way’s companions spell trouble for dark matter? Do the Milky Way’s companions spell trouble for dark matter? Do the Milky Way’s companions spell trouble for dark matter? Do the Milky Way’s companions spell trouble for dark matter?

Description: Do the Milky Way’s companions spell trouble for dark matter? Rating: 4.5 Reviewer: carsimulator - Item Reviewed: Do the Milky Way’s companions spell trouble for dark matter?

{ 0 comments... read them below or add one }

Post a Comment