For the first time, astronomers have mapped dark matter on the largest scale ever observed. The results, presented by Dr Catherine Heymans of the University of Edinburgh, Scotland, and Associate Professor Ludovic Van Waerbeke of the University of British Columbia, Vancouver, Canada, are being presented today to the American Astronomical Society meeting in Austin, Texas. Their findings reveal a Universe comprised of an intricate cosmic web of dark matter and galaxies that spans more than one billion light years.
An international team of researchers lead by Van Waerbeke and Heymans achieved their results by analysing images of about 10 million galaxies in four different regions of the sky. They studied the distortion of the light emitted from these galaxies, which is bent as it passes massive clumps of dark matter during its journey to Earth.
Their project, known as the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), uses data from the Canada-France-Hawaii Telescope Legacy Survey. This accumulated images over five years using the wide field imaging camera MegaCam, a 1 degree by 1 degree field-of-view 340 Megapixel camera on the CFHT in Hawaii.
Galaxies included in the survey are typically six billion light years away. The light captured by the telescope images used in the study was emitted when the Universe was six billion years old - approximately half the age it is today.
The team's result has been suspected for a long time from studies based on computer simulations, but was difficult to verify owing to the invisible nature of dark matter. This is the first direct glimpse at dark matter on large scales showing the cosmic web in all directions.
Professor Ludovic Van Waerbeke, from the University of British Columbia, said: "It is fascinating to be able to 'see' the dark matter using space-time distortion. It gives us privileged access to this mysterious mass in the Universe which cannot be observed otherwise. Knowing how dark matter is distributed is the very first step towards understanding its nature and how it fits within our current knowledge of physics."
Dr Catherine Heymans, a Lecturer in the University of Edinburgh's School of Physics and Astronomy, said: "By analysing light from the distant Universe, we can learn about what it has travelled through on its journey to reach us. We hope that by mapping more dark matter than has been studied before, we are a step closer to understanding this material and its relationship with the galaxies in our Universe."
For Dr Christian Veillet, CFHT Executive Director, this dark matter study illustrates the strong legacy value of the CFTHLS: it is now enabling exciting results obtained by teams from many nations which use the CFHTLS images retrieved from the Canadian Astronomy Data Centre where they are archived and publicly available.
Professor Lance Miller, from Oxford University said: "This result has been achieved through advances in our analysis techniques which we are now applying to data from the Very Large Telescope's (VLT) Survey Telescope in Chile."
Professor Lance Miller, from Oxford University said: "This result has been achieved through advances in our analysis techniques which we are now applying to data from the Very Large Telescope's (VLT) Survey Telescope in Chile."
Professor Koen Kuijken, from Leiden University, said: "Over the next three years we will image more than 10 times the area mapped by CFHTLenS, bringing us ever closer to our goal of understanding the mysterious dark side of the Universe."
The observations show that dark matter in the Universe is distributed as a network of gigantic dense (white) and empty (dark) regions, where the largest white regions are about the size of several Earth moons on the sky. Credit: Van Waerbeke, Heymans, and CFHTLens collaboration.
This research was supported by the European Research Council, Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advanced Research and the Canadian Astronomy Data Centre.
Contacts:
Catriona Kelly, University of Edinburgh, tel 44 131 651 4401; Catriona.Kelly@ed.ac.uk
Brian Lin, University of British Columbia, tel 001 604 822 2234; Brian.Lin@ubc.ca
Jean-Charles Cuillandre, Canada-France-hawaii Telescope, tel 001808 885 7944; cuillandre@cfht.hawaii.edu
More Images
The observations show that dark matter in the Universe is distributed as a network of gigantic dense (light) and empty (dark) regions, where the largest dense regions are about the size of several Earth moons on the sky. Credit: Van Waerbeke, Heymans, and CFHTLens collaboration
The densest regions of the dark matter cosmic web host massive clusters of galaxies
Credit: Van Waerbeke, Heymans, and CFHTLens collaboration
Credit: Van Waerbeke, Heymans, and CFHTLens collaboration
The ubiquitous dark matter cosmic web is seen in all four directions surveyed by the Canada-France-Hawaii Telescope during each season of the year. The central colour inset shows the previous largest COSMOS Dark Matter map (credit: NASA, ESA, P. Simon and T. Schrabback) and the full moon to scale. Credit: Van Waerbeke, Heymans, and CFHTLens collaboration
From left to right, Spring, Summer, Fall, and Winter
Credit: Van Waerbeke, Heymans, and CFHTLens collaboration
Credit: Van Waerbeke, Heymans, and CFHTLens collaboration
{ 0 comments... read them below or add one }
Post a Comment